Importance of the role of secondary orbital interactions in the Diels-Alder reaction. Regioselectivity in the catalyzed and uncatalyzed reactions of juglone and aliphatic dienes

J iro M otoyoshiya,* Tetsuo Kameda, M akiko A sari, M aki M iyamoto, Susumu N arita, H iromu A oyama and Sadao H ayashi

D epartment of Chemistry, Faculty of Textile Science \& Technology, Shinshu U niversity, U eda, Nagano 386, J apan

Abstract

The regioselectivities in the uncatalyzed and catalyzed D iels-A Ider (DA) reactions of juglone with piperylene (penta-1,3-diene) or 2,3-dimethylpenta-1,3-diene have been investigated, employing L ewis acids such as boron trifluoride $\left(\mathrm{BF}_{3}\right)$ and sterically hindered aluminium catalysts in order to verify the role of the secondary orbital interactions (SOI). W hile the results of the uncatalyzed and catalyzed reactions using $B F_{3}$ or aluminium trimethoxide agree with the prediction made by the frontier molecular orbital (FMO) theory considering SOI, steric repulsion of the aluminium catalysts causes orderly changes to the ratios of the product regioisomers, which could be interpreted by diminution of SOI. The transition states are located by A M 1 calculations and their energies are estimated by CD N O/2-CI and ab initio 6-31G * calculations. The regioselectivities observed in the experiments are explained by comparison of their energies. A zwitterionic mechanism in the catalyzed reaction was strongly supported and the molecular orbital feature suggests the contribution of SOI which would stabilize the transition state to control the reaction pathway.

Introduction

The regioselectivity and the endo-selectivity (A Ider-Stein rule) in the Diels-Alder (DA) reaction have been generally explained by the frontier molecular orbital theory (FMO theory). ${ }^{1}$ The outline of this theory is that the primary orbital interactions chiefly control the regioselectivity of the reaction, according to the magnitudes of the HOMO or LUMO coef ficients of the reactants, while the endo-selectivity is due to the secondary orbital interactions (SOI). ${ }^{2} \mathrm{M}$ any theoretical and experimental investigations have explored the role of SOI^{3} and the stereoselectivity has been interpreted by considering the balance between SOI and steric requirements. ${ }^{4}$ A Iston et al. ${ }^{5}$ pointed out that SOI were an important factor in orientation, when the differences between the magnitudes of the frontier orbital coefficients of the reaction sites were small but the differences between those of the adjacent non-bonding sites were much larger. D espite several reports ${ }^{6}$ supporting A Iston's suggestion, it seems to remain as yet uncertain, and has been treated as a temporary expedient. Our investigation in this paper was made to bring SOI into relief, considering molecular orbital calculations and steric effects, employing Lewis acid catalysts of various sizes in the DA reaction of 1 -substituted aliphatic dienes [piperylene (penta-1,3-diene) and 2,3-dimethylpenta-1,3-diene] ${ }^{7}$ and juglone (5-hydroxy-1,4 naphthoquinone). ${ }^{8,9}$ Although FMO theory and transition state theory (TS theory) have been treated as alternatives so far, because the large changes during the transition from the reactants to the transition states are beyond perturbation, in highly regioselective reactions, agreement of the predictions by both theories should be expected. As efficient interactions of FM Os would guarantee stabilization of the transition states, there may be a relationship between the orbital shapes of the transition states and the FMOs of the reactants. Therefore, we also investigated the transition states to compare those theories.

Fig. 1 The frontier orbital coefficients of dienes (HOMO) and juglones (LU M O) calculated by A M 1

Results and discussion
 Prediction of regioselectivity by FM 0 theory

The frontier orbital coefficients of piperylene, 2,3-dimethylpenta-1,3-diene, juglone and its complex with Lewis acids are shown in Fig. 1. The H OM O coefficients of piperylene have been calculated by various methods. The magnitudes of the coefficients of the terminal carbons in the diene moiety differed depending upon the calculation methods. INDO ${ }^{5 c}$ and CNDO/2 $2^{5 c, 7 a}$ semiempirical methods gave larger magnitudes at the unsubstituted terminus than the substituted one, as an organic chemist would expect. ${ }^{1}$ In contrast, MNDO, AM $1^{\text {7b }}$ (coefficient given in Fig. 1) and ab initio STO-3G ${ }^{7 b}$ showed the opposite results. Such discrepancy would be due to a different evaluation of donor character of the methyl group. However, all calculations agreed in that the differences between the coefficients of non-bonding sites were larger than those of the reaction sites, which made the reaction a suitable case to test whether SOI was significant in prediction of the orientations. 2,3-D imethylpenta-1,3-diene showed a similar result.

In juglone, small differences in the magnitudes of the LU M 0 coefficients between the two reaction sites, C-2 and C-3, and the two carbonyl carbons, C-1 and C-4, were estimated by AM 1 . However, STO-3G gave a larger difference in coefficients between $\mathrm{C}-1$ and $\mathrm{C}-4$ due to intramolecular hydrogen bonding; ${ }^{10}$ namely, -0.2359 at $\mathrm{C}-1,-0.3697$ at $\mathrm{C}-2,0.3345$ at $\mathrm{C}-3$ and 0.3091 at $\mathrm{C}-4$ were estimated. Thus, preference of synadducts (Scheme 1), due to control of SOI, is expected in the uncatalyzed reactions of juglone with both dienes.

The coordination of BF_{3} (boron trifluoride) at $\mathrm{C}-1$ oxygen, which gave a slightly lower LUM 0 energy than coordination at C-4 oxygen in STO-3G, showed reversal of the magnitudes of the LU M O coefficients; now the difference between $\mathrm{C}-1$ and C -

4 coefficients was much larger than that between C-2 and C-3. Such a drastic change in the LUM O coefficients by the coordination of Lewis acid has been described in an acrolein system. ${ }^{11}$ The favourable coordination of BF_{3} at $\mathrm{C}-1$ has also been documented from a steric view point. ${ }^{12}$ Thus, control by SOI predicts predominance of anti-adduct in the BF_{3} catalyzed reaction.

Replacement of one ligand on aluminium trimethoxide with juglone can form an intramolecular coordination of the Lewis acid centre to $\mathrm{C}-4$ oxygen. ${ }^{13}$ This has the opposite effect on the magnitudes of the LUMO coefficients to BF_{3}-coordinated juglone, giving the syn-adduct preferentially. We used various aluminium catalysts with bulky aryloxy moieties ${ }^{14}$ in experiments to verify the influence of the steric hindrance of the catalysts. In this calculation, aluminium trimethoxide was selected as a representative of aluminium catalysts to estimate the LUM O coefficients.

Consequently, all predictions are proposed typical cases where SOI rather than the primary interaction will govern the orientation. Because of a close relation between SOI and steric hindrance, the changes in the regioselectivity depending upon steric requirements of the catalysts will support contribution of SOI. The following experiments were made in this context.

Diels-Alder reaction of juglone and unsymmetrical dienes

The outline and results of this section are shown in Scheme 1 and Table 1. The thermal reaction of juglone and piperylene in boiling benzene gave a quantitative mixture of syn- and anti-1. The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture showed two methyl protons at $\delta 0.77$ and 1.00 as doublets and two phenolic protons at $\delta 12.33$ and 11.93 in the ratio of $2: 1$, respectively. In order to distinguish the syn- or anti-adducts, further conversion was attempted. A romatization of the crude mixture by heating in nitrobenzene and pyridine gave a mixture of anthraquinones, syn- and anti-2, in 77% yield, whose ${ }^{1} H$ N M R spectrum showed an overlapping methyl signal at $\delta 2.80$ and two phenolic protons at $\delta 12.87$ and 12.53 in the ratio of $2: 1$, respectively. The isomer ratio was maintained through aromatization. For the purpose of assignment, we compared those chemical shifts with that of the known 1 -hydroxyanthraquinone ${ }^{15}$ and newly prepared 5 -hydroxy-1,4-dimethylanthraquinone. While the phenolic proton of the former resonated at $\delta 12.60$, that of the latter appeared at $\delta 12.70$. The presence of the 4 -methyl group seemed to increase polarization of the adjacent carbonyl group to shift the phenolic proton to lower field. Thus, we supposed that the major isomer with $\delta 12.87$ was syn-2 and the minor with $\delta 12.53$ was anti-2, which was proved later to be correct by isolation of the anti-isomer in the BF_{3} catalyzed reaction followed by conversion into the anthrone derivative.

In the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, the reaction of juglone and piperylene gave adducts which could not be distinguished. Conversion of these crude adducts into anthraquinones $\mathbf{2}$ showed that the isomer with the phenolic proton at $\delta 12.53$ was overwhelmingly predominant. Purification by column chromatography afforded a pure anthraquinone derivative in 68% yield, which

Table 1 Diels-A Ider reaction of juglone and aliphatic dienes with or without L ewis acid catalysts

D iene	Catalyst ${ }^{\text {a }}$	Solvent ($\mathrm{T} /{ }^{\circ} \mathrm{C}$)	Time ${ }^{\text {b }}$	Y ield ${ }^{\text {c }}$ (\%)	R atio ${ }^{\text {d }}$ syn : anti
Piperylene	none	benzene (reflux)	48 h	77	2:1
	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	benzene (0)	24 h	68	1: >99
2,3-D imethylpentadiene	none	benzene (reflux)	60 h	68	1.7:1
	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	benzene (0)	24 h	46	1:7.3
Piperylene	$\mathrm{Al}(\mathrm{OM} \mathrm{e})_{3}{ }^{\text {e }}$	toluene (0-room temp.)	4 d	44	2:1
	$\mathrm{Al}(\mathrm{OPh})_{3}$	toluene (0 -room temp.)	3 d	f	1.6:1
	ATM P9	toluene (0-room temp.)	2.5 d	78	1:1
	ATPH ${ }^{\text {n }}$	toluene (0-room temp.)	3 d	47	1:14

[^0]Table 2 Calculated energies, geometric parameters and dipole moments of transition states

	Energy				Bond length ${ }^{\text {a }}$ (bond order)		Dipole moment ${ }^{\text {b }}$
	$A M 1^{\text {c }}$		CNDO/2-Cl ${ }^{\text {d }}$	6-31G*e			
	ΔH_{f}	$\Delta \mathrm{E}_{\mathrm{a}}$			Long	Short	
TS1	-13.69	27.7	-4691.402 6	-800.644 422	2.25 (0.33)	2.03 (0.43)	2.37
TS2	-13.61	27.8	-4691.257 6	-800.644 221	2.22 (0.34)	2.05 (0.42)	2.36
TS3	-5.37	25.6	-4807.4889	-827.045 262	2.16 (0.38)	2.12 (0.39)	4.72
TS4	-5.24	25.7	-4807.624 3	-827.047 228	2.57 (0.16)	1.92 (0.47)	5.49

${ }^{\mathrm{a}} \AA$ estimated by $A M 1 .{ }^{\mathrm{b}} \mathrm{D}\left(\mathrm{D} \approx 3.33564 \times 10^{-30} \mathrm{C} \mathrm{m}\right)$ estimated by $\mathrm{AM} 1 .{ }^{\mathrm{c}} \mathrm{kcal} \mathrm{mol}^{-1}$. ${ }^{\mathrm{d}} \mathrm{eV}$. Configurations were constructed from 19 occupied M Os and 19 vacant M Os. ${ }^{\mathrm{e}}$ a.u.
was further reduced to anthrone derivative 5 with tin(II) chloride and hydrochloric acid in refluxing EtOH. The phenolic proton at $\delta 13.03$ in this anthrone showed that the $0-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond remained intact; namely, the carbonyl group opposite to the hydroxy group was reduced chemoselectively. The observation of NOE between the methyl and methylene protons allowed unambiguous assignment that this reduced product was 1-hydroxy-5-methylanthrone $5(\mathrm{R}=\mathrm{H})$, which was, of course, derived from anti-1. These experimental results proved that, in contrast to the thermal reaction, where syn- $\mathbf{1}$ is the major product, BF_{3} caused reversal of the orientation, and anti-1 was predominant.
A ccording to the same procedure, the orientation in the reaction of juglone and the more sterically hindered 2,3-dimethylpenta-1,3-diene was also determined after conversion into anthrone $6\left(\mathrm{R}_{3}=\mathrm{CH}_{3}\right)$ through anthraquinone 4 . While the reaction without a catalyst gave a mixture of syn- and anti-4 in the ratio of $1.7: 1$, the $B F_{3}$ catalyzed reaction resulted in the ratio of $1: 7.3$, respectively. The catalyst reversed the orientation again but the component of anti-isomer in the catalyzed reaction was evidently decreased compared to the case with piperylene.

The steric effect of the catalysts on the orientation was further examined using organoaluminium compounds with alkoxy or aryloxy groups. ${ }^{16} \mathrm{D}$ isappearance of the phenolic proton of juglone in the ${ }^{1} \mathrm{H} N M \mathrm{R}$ spectrum showed the coordination of the catalyst at C-4 oxygen. The DA reaction of juglone and piperylene in the presence of aluminium catalysts proceeded slowly (four days at room temperature). A s shown in Table 1, the component of syn- 1 in the product mixture decreased gradually in the order of steric bulkiness of the aluminium catalysts. The orientation was completely reversed as expected, when the sterically most crowded aluminium tris(2,6-dimethylphenoxide) (ATM P) was used.

We may now compare the experimental results with the prediction made by FM O theory. Whereas the small difference in the coefficients of free juglone is reflected in a small preference for the syn-adduct, the predominance of the anti-isomer in the BF_{3}-catalyzed reactions with both dienes matches well with the anticipated products described earlier. Decrease of the antiadduct in the catalyzed reaction with 2,3-dimethylpenta-1,3diene would be due to steric repulsion. In the bond forming process, the two methyl groups attached on the internal carbons of the diene would obstruct endo approach to diminish the secondary orbital overlap.

The competition between SOI and steric hindrance can be seen clearly in a series of the organoaluminium catalyzed reactions. U sing catalysts with smaller substituents, formation of syn-adduct is preferred, as expected, but the most crowding created by the large moieties of ATPH resulted in predominance of anti-1. Here steric repulsion would be a serious impediment to approach from the endo side, as observed in the exo-selective DA reaction with ATPH. ${ }^{17}$ Thus, SOI was significantly diminished in this system. The gradual decrease of syn-adduct according to bulkiness of the aluminium catalysts corresponds to gradual diminution of such interactions.

Fig. 2 Structures of transition states in the Diels-A Ider reaction of juglone and piperylene located by A M 1. TS1 and TS2 are given for syn1 and anti-1, respectively, in the uncatalyzed reaction. BH_{3}-coordinated TS3 and TS4 are for syn-1 and anti-1, respectively. Carbons are black, hydrogens are white, oxygens are meshed, and borons are broadly striped.

Consequently, these results seem to emphasize the importance of SOI in determining regioselectivity, when sterically allowed.

Transition states

Thetransition states were located with theA M 1 method using the TS routine implemented in M OPAC (Ver. 6). ${ }^{18} \mathrm{BH}_{3}$ was used as a Lewis acid instead of BF_{3} because of failure to obtain transition states with BF_{3} in this routine. As a precaution, we confirmed that BH_{3}-coordinated juglone gave almost equal frontier orbital coefficients to that of BF_{3}-coordinated juglone. All located structures were characterized as transition states by the presence of only one negative force constant in the H essian matrix of each force calculation. The CND O/2-CI and ab initio $\left(6-31 G^{*}\right)$ (Spartan program package) calculations were performed based on the transition structures obtained by AM 1 . The structures, energies, geometric parameters, and dipole moments of these transition states are shown in Fig. 2 and Table 2.
The bond lengths of both reaction sites were not equal in the transition states TS1 and TS2, in which the sterically hindered sites were longer by ca. $0.2 \AA$ than the other sites, as often observed in theoretical studies of DA reactions with unsymmetrical reactants. ${ }^{19}$ These structures seemed to be for concerted but not for synchronous cycloadditions. Energetically TS1 was advantageous; namely, lower energies were estimated for TS1 than for $\mathbf{T S 2}$, by $0.08 \mathrm{kcal} \mathrm{mol}^{\mathbf{- 1}}$ in A M 1, 3.34 kcal mol^{-1} in CNDO/2-CI and $0.13 \mathrm{kcal} \mathrm{mol}^{-1}$ in $6-31 \mathrm{G}^{*}$, but the small difference in energy calculated by the more reliable ab initio method suggested a low selectivity for the syn-adduct as observed in the experiments.

Fig. 3 M olecular orbital features (M acSpartan). HOM Os of TS1 and TS4 and LU M O + 1 of TS4.

The coordination of BH_{3} reduced the activation energy by ca. $2 \mathrm{kcal} \mathrm{mol}^{-1}$ compared to the uncatalyzed reaction. Whereas TS3, obtained as the transition state for the syn-isomer, was the synchronous structure, TS4, for the anti-adduct, showed a high degree of asynchronicity, in which the sterically hindered side was longer by $0.65 \AA$. The much larger dipole moment of TS4 than that of TS3 revealed that the reaction would proceed via a highly polarized transition state in an asynchronous manner. This showed not a concerted mechanism but an ionic mechanism ${ }^{20}$ for the formation of the anti-isomer. The change in the mechanism (concerted or ionic) of the catalyzed DA reaction is not unusual, as documented by Branchadell et al. ${ }^{21}$ They reported that in the presence of Lewis acid catalyst there were two distinct pathways for the formation of each regioisomer and that charge transfer was important in the transition state of the Lewis acid coordinated reaction between acrolein and 1-substituted butadienes. In contrast to AM 1 calculations, TS4 gave a lower energy than TS3 by $1.23 \mathrm{kcal} \mathrm{mol}^{-1}$ in $6-31 \mathrm{G}^{*}$. In this calculation level, there was a larger difference in energy between TS3 and TS4 than between TS1 and TS2, so that experimentally observed predominance of the anti-isomer in the catalyzed reaction was reasonably explained.
The structurally close transition states of uncatalyzed reaction with 2,3-dimethylpenta-1,3-diene were also located by AM1. In these transition states, slightly longer distances between secondary interacting sites were observed, which would bedueto steric repulsion of themethyl groups, but the activation energies for syn- and anti-adducts were estimated to be almost equal (within $1 \mathrm{kcal} \mathrm{mol}^{-1}$) to those of the piperylene reaction.

N ext, we looked at the molecular orbital features of TS3 and TS4 as shown in Fig. 3, and a large discrepancy was found between them. It is interesting to know that HOM Os of the transition states show just the bond forming processes. That the HOM O orbital develops in both bonding sites almost equally in TS3 indicates a synchronous bonding process, but the experimental result rules this out. In TS4 the H OM O orbital extends only in the longer site. According to the report ${ }^{22}$ which described that there were two saddle points in the energy profiles in the L ewis acid catalyzed DA reaction, the picture of TS4 presented the second bond-forming step in a zwitterionic process. Interestingly, SOI can be seen in the orbital shape of LUM $0+1$ of TS4 as a mixing of orbitals at non-bonding sites, where the distance between secondary interacting carbon atoms
is $2.94 \AA$. Similar interactions could also be seen in LU M O +1 of TS1 and TS2 but not in TS3, which indicates that such interaction would be important in asynchronous, rather than synchronous, addition. It is no little wonder that the interaction can be seen in this orbital because LUM O +1 of the product should be derived from unoccupied orbitals of the reactants in a correlation diagram. ${ }^{23}$ Our calculation showed that the magnitudes of the LUM O+1 coefficients of the carbonyl carbons in BH_{3}-coordinated juglone were still large, maintaining the pattern of its LU M O coefficients except for the difference in the orbital phases, and that a suitable combination for the secondary orbital overlapping between each LUM O+1 of the reactants was possible. Consistency of prediction made by TS and FM O theory supports the stabilization of the transition states by such secondary orbital overlap, which are important factors in deciding regioselectivities, especially in DA reactions through polarized transition states.

Experimental

The melting points were determined with a M itamura hot-stage apparatus and are uncorrected. M icroanalyses were performed on a Perkin-EImer PE 2400 CHN elemental analyzer. ${ }^{1} \mathrm{H}$ N M R spectrum were recorded in CDCl_{3} with a JEOL PM X 60 (60 M Hz) and a Bruker A M - $400(500 \mathrm{MHz}$). M ass spectra were determined with a Shimadzu GCM S-Q P 1000EX at an ionizing voltage of 70 eV . Column chromatography was performed on silica gel (Wacogel C-200) with ethyl acetate-hexane as the eluents. The reactions with aluminium catalysts were performed under an atmosphere of dry nitrogen.

Uncatalyzed DA reaction of juglone and piperylene and conversion of the adducts into anthraquinones (syn-2 and anti-2) A mixture of juglone ($0.50 \mathrm{~g}, 2.87 \mathrm{mmol}$) and piperylene (1.96 $\mathrm{g}, 28.7 \mathrm{mmol}$) in $50 \mathrm{~cm}^{3}$ of benzene was heated under reflux for 48 h . Removal of the solvent and excess piperylene gave a crude mixture of 5-hydroxy-4-methyl-1,4,4a,9a-tetrahydro-9,10anthraquinone (syn-1) and 5-hydroxy-1-methyl-1,4,4a,9a-tetrahydro-9,10-anthraquinone (anti-1), which was heated in pyridine ($15 \mathrm{~cm}^{3}$) and nitrobenzene ($20 \mathrm{~cm}^{3}$) for 6 h . Removal of the solvents by steam distillation, filtration and purification by column chromatography gave an orange crystalline mixtureof 5-hydroxy-4-methyl-9,10-anthraquinone (syn-2) and 5-hydroxy-

1-methyl-9,10-anthraquinone (anti-2) ($0.53 \mathrm{~g}, 77 \%$) in the ratio of $2: 1$, respectively (Found: $\mathrm{C}, 74.4 ; \mathrm{H}, 5.8 \mathrm{Calc}$. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 74.4; H, 5.8\%); $\delta_{\mathrm{H}} 2.80(\mathrm{~s}, 3 \mathrm{H}$), 7.07-8.37 (m, 6 H), 12.53 ($\mathrm{s}, 0.33 \mathrm{H}$ for anti-2) and 12.87 ($\mathrm{s}, 0.66 \mathrm{H}$ for syn-2); m/z 242.

$\mathrm{BF}_{3} \cdot \mathrm{OEt} \mathrm{t}_{2}$ catalyzed DA reaction of juglone and piperylene and

 aromatization to anthraquinones (syn-2 and anti-2). Isolation of anti-2 and reduction to anthrone (5)To a solution of juglone (0.30 g 1.72 mmol) and boron trifluoride-diethyl ether ($0.24 \mathrm{~g}, 1.72 \mathrm{mmol}$) in $30 \mathrm{~cm}^{3}$ of benzene was added piperylene ($0.59 \mathrm{~g}, 8.60 \mathrm{mmol}$) and the solution was stirred for 24 h at $0^{\circ} \mathrm{C}$. A fter removal of the solvent, the mixture was dissolved in pyridine ($4 \mathrm{~cm}^{3}$) and nitrobenzene (5 cm^{3}) and heated for 6 h under reflux. Removal of the solvents by steam distillation and filtration gave the crude mixture, which was purified by column chromatography to give anti-2 with a small amount of syn-2. Recrystallization from benzenehexane gave pure anti-2 ($0.13 \mathrm{~g}, 68 \%$). The thus obtained anthraquinone (anti-2) ($0.1 \mathrm{~g}, 0.42 \mathrm{mmol}$) was dissolved in acetic acid $\left(2.8 \mathrm{~cm}^{3}\right)$ and to this solution was added a warm solution of tin(II) chloride dihydrate ($0.9 \mathrm{~g}, 4.0 \mathrm{mmol}$) in hydrochloric acid $\left(0.9 \mathrm{~cm}^{3}\right)$. A fter heating under reflux for 12 h , water (10 cm^{3}) was added and the crystalline mass was filtered and dried. Recrystallization from chloroform-methanol gave 1-hydroxy-5methylanthrone (5) ($0.05 \mathrm{~g}, 52 \%$); mp $151-155^{\circ} \mathrm{C}$ (Found: C, 80.1; H , 5.4 Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 80.3 ; \mathrm{H}, 5.4 \%$); $\delta_{\mathrm{H}} 2.38$ (s, 3 H), 4.08 (s, 2 H), 6.88 (d, 1 H), 6.92 (d, 1 H), 7.34 (t, 1 H), 7.43 (t, 2 H), $8.16(\mathrm{~d}, 1 \mathrm{H})$ and $13.03(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{c}} 19.0,30.6,115.0$, 116.3, 118.8, 125.0, 126.8, 131.0, 134.8, 135.5, 136.0, 139.0, 141.7, 163.0 and 189.9; m/z $238\left(\mathrm{M}^{+}\right)$.

U ncatalyzed DA reaction of juglone and 2,3-dimethylpenta-1,3diene and conversion of the adducts into anthraquinone (syn-4 and anti-4)

2,3-D imethylpenta-1,3-diene was prepared by the Wittig reaction of methylene triphenylphosphorane and 3-methylpent-3-en-2-one in 26% yield. The DA reaction with juglone, aromatization and purification were carried out according to the above described procedureto yield a 1.7:1 mixture of 5-hydroxy-2,3,4-trimethyl-9,10-anthraquinone (syn-4) and 5-hydroxy-1,2,3-trimethyl-9,10-anthraquinone (anti-4) in 68% yield (Found: C, 76.7; $\mathrm{H}, 5.6 \mathrm{Calc}$. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 76.7 ; \mathrm{H}, 5.3 \%$); $\delta_{\mathrm{H}} 2.30$ (s, 3 H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 1.11 \mathrm{H}$ for anti-4), $2.73(\mathrm{~s}, 1.89 \mathrm{H}$ for syn-4), 7.10-8.11 (m, 6 H), 12.58 (s, 0.37 H for anti-4) and 12.92 ($\mathrm{s}, 0.63 \mathrm{H}$ for syn-4); m/z 266.
$B F_{3} \cdot E t_{2}$ catalyzed DA reaction of juglone and 2,3-dimethylpenta-1,3-diene and aromatization to anthraquinones (syn-4 and anti4). I solation of anti-4 and reduction to anthrone (6)

The DA reaction using juglone ($0.30 \mathrm{~g}, 1.72 \mathrm{mmol}$) and $2,3-$ dimethylpenta-1,3-diene ($0.27 \mathrm{~g}, 1.72 \mathrm{mmol}$) in the presence of boron trifluoride-diethyl ether ($0.24 \mathrm{~g}, 1.72 \mathrm{mmol}$) in $30 \mathrm{~cm}^{3}$ of benzene followed by aromatization according to the above described procedure gave a mixture of 5 -hydroxy-2,3,4-tri-methyl-9,10-anthraquinone (syn-4) and 5 -hydroxy-1,2,3-tri-methyl-9,10-anthraquinone (anti-4) in 46\% yield. Separation by column chromatography and recrystallization from benzenehexane gave only anti-4, which was converted into 5-hydroxy-1,2,3-trimethylanthrone (6) as described above in 63% yield; mp 181-183 ${ }^{\circ} \mathrm{C}$ (Found: C, 80.9; H, 6.3 Calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 80.9; $\mathrm{H}, 6.4 \%$); $\delta_{\mathrm{H}} 2.27$ (s, 6 H), 2.34 (s, 3 H), 4.06 ($\mathrm{s}, 2 \mathrm{H}$), 6.86 (d, 1 H), $6.90(\mathrm{~d}, 1 \mathrm{H}), 7.34$ (t, 1 H), $7.94(\mathrm{~s}, 3 \mathrm{H})$ and 13.13 (s, 1 H); $\delta_{c} 15.1,16.6,20.9,31.2,114.7,116.2,118.8,125.5,128.4$, $134.1,135.1,135.6,136.5,142.0,142.1,162.9$ and $190.0 ; \mathrm{m} / \mathrm{z}$ $252\left(\mathrm{M}^{+}\right)$.

Preparation of 5-hydroxy-1,4-dimethyl-9,10-anthraquinone

 Juglone ($0.4 \mathrm{~g}, 2.3 \mathrm{mmol}$) and hexa-2,4-diene ($1.0 \mathrm{~g}, 12.1 \mathrm{mmol}$) was heated in benzene ($50 \mathrm{~cm}^{3}$) for 50 h under reflux. A fter removal of the solvent, the crude material was heated in pyri-dine ($3 \mathrm{~cm}^{3}$) and nitrobenzene ($10 \mathrm{~cm}^{3}$) for 3 h under reflux. Removal of the solvents by distillation under reduced pressure gave crystalline solid ($0.46 \mathrm{~g}, 80 \%$ based on juglone); mp 158$159^{\circ} \mathrm{C}$ (from benzene and hexane) (Found: C, $76.2 ; \mathrm{H}, 4.8 \mathrm{C}$ alc. for $\left.\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 76.2 ; \mathrm{H}, 4.8 \%\right)$; $\delta_{\mathrm{H}} 2.75(\mathrm{~s}, 6 \mathrm{H}), 7.00-7.70(\mathrm{~m}, 5$ H) and $12.66(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}\right)$.

DA reaction of juglone and piperylene with aluminium catalysts

A luminium trimethoxide solution was prepared according to the established manner by addition of a trimethyl aluminium hexane solution ($1.72 \mathrm{mmol}, 1.08 \mathrm{~mol}^{-1}$ in hexane, A Idrich) to a solution of methanol ($0.17 \mathrm{~g}, 5.16 \mathrm{mmol}$) in toluene ($5 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. To the thus prepared trimethoxyaluminium solution was added juglone ($0.3 \mathrm{~g}, 1.72 \mathrm{mmol}$) in toluene ($10 \mathrm{~cm}^{3}$). A fter stirring for 15 min , piperylene ($1.17 \mathrm{~g}, 17.2 \mathrm{mmol}$) in toluene $\left(5 \mathrm{~cm}^{3}\right)$ was added and the resulting solution was stirred for 12 h at $0^{\circ} \mathrm{C}$ and for 4 days at room temperature. A fter removal of the solvent, pyridine ($6.1 \mathrm{~cm}^{3}$) and nitrobenzene ($8 \mathrm{~cm}^{3}$) were added to the residue and the solution was heated for 6 h under reflux. Removal of the solvent by steam distillation and separation by column chromatography gave a mixture of syn- $\mathbf{3}$ and anti-3 $(0.18 \mathrm{~g}, 44 \%)$. The ratio of the isomers was determined by the integration of phenolic protons at $\delta 12.53$ for anti- 3 and 12.87 for syn- 3 in the ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectrum.

The other aluminium catalysts were also prepared from a trimethyl aluminium hexane solution as described above with three equivalent phenols; namely, phenol for aluminium triphenoxide, 2,6-xylenol for aluminium tris(2,6-dimethylphenoxide) (ATM P), 2,6-diphenylphenol for aluminium tris(2,6-diphenylphenoxide) (ATPH) were used. The reaction, aromatization and determination of the isomer ratio were performed by the above described procedure.

A cknowledgements

The authors thank Professor Ryozo Irie (Faculty of A griculture, Shinshu U niversity) for the measurements of ${ }^{1} \mathrm{H}(500$ MHz) and ${ }^{13} \mathrm{C}$ NMR spectrum and Associate Professor Tomoshige K obayashi (Faculty of Science, Shinshu U niversity) for the measurement of mass spectra.

References

1 I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, N ew York, 1976.
2 R. Gleiter and M. C. Bohm, P ure A ppl. Chem., 1983, 55, 237.
3 (a) D. Ginsburg, Tetrahedron, 1983, 39, 2095; (b) D. Suarez, T. L. Sordo and J. A. Sordo, J. A m. Chem. Soc., 1994, 116, 763; (c) D. Suarez, X. A ssfeld, J. Gonzalez, M. F. Ruiz-L opez and J. A. Sordo, J. Chem. Soc., Chem. Commun., 1994, 1683; (d) Y. A peloig and E. M atzner, J. Am. C hem. Soc., 1995, 117, 5375.

4 (a) L. E. Overmann, G. F. Taylor, K . N. Houk and L. N. D omelsmith, J. Am. Chem. Soc., 1978, 100, 3182; (b) A. A. Broekhuis, J. W. Scheeren and R . J. F. Nivard, Recl. Trav. Chim. Pays-B as, 1980, 99, 6; (c) P. Binger, P. Wedemann, R. G oddard and U. Brinker, J. Org. Chem., 1996, 61, 6462; (d) F. Bohlmann, W. M athar and H. Schwarz, Chem. Ber., 1977, 110, 2028.
5 (a) P. V. A Iston, R . M . Ottenbrite and D. D. Shillady, J. Org. C hem., 1973, 38, 4075; (b) P. V. A Iston and D. D. Shillady, J. Org. Chem., 1974, 39, 3402; (c) P. V. A Iston and R . M . Ottenbrite, J. Org. C hem., 1975, 40, 1111; (d) P. V. Alston, R. M. Ottenbrite and T. Cohen, J. Org. Chem., 1978, 43, 1864; (e) P. V. Alston, M. D. Gordon, R . M . Ottenbrite and T. Cohen, J. Org. Chem., 1983, 48, 5051.
6 (a) I. F leming, J. P. M ichael, L. E. Overman and G. F. Taylor, Tetrahedron L ett., 1978, 19, 1313; (b) I.-M . Tegmo-L arsson, M. D. Rozeboom and K. N. Houk, Tetrahedron Lett., 1981, 22, 2043; (c) R. K. Boeckman, J r., T. M. D olak and K. O. Culos, J. Am. Chem. Soc., 1978, 100, 7098.
7 The BF_{3} catalyzed Diels-A Ider reaction with piperylene: (a) E. Ohgaki, J. M otoyoshiya, S. N arita, T. K akurai, S. H ayashi and K . Hirakawa, J. C hem. Soc., Perkin Trans. 1, 1990, 3109; (b) M . A so, A. Ojida, G. Y ang, O.-J. Cha, E. O sawa and K. K anematsu, J. Org. C hem., 1993, 58, 3960.

8 The Diels-Alder reactions with juglone: (a) T. R. K elly, J. W Gillard, J r., R. N. G oerner and J. M. Lyding, J. Am. Chem. Soc., 1977, 99, 5513; (b) G. Stork and A. A . H agedorn III, J. A m. Chem. Soc., 1978, 100, 3609; (c) W. B. M anning, Tetrahedron Lett., 1979, 1661; (d) B. M. Trost, W. C. Vladuchick and A. Bridges, J. Am. Chem. Soc., 1980, 102, 3554; (e) T. R. K elly, A. Whiting and N. S. Chandrakumar, J. A m. Chem. Soc., 1986, 108, 3510; (f) W. Blokzijl, M. Blandamer and J. B. F. N. Engberts, J. A m. Chem. Soc., 1991, 113, 4241.
9 R. H. Thomson, Naturally Occuring Quinones III, Chapman and H all, L ondon, 1987.
10 M. D. Rozeboom, I.-M . Temgo-L arsson and K. N. Houk, J. Org. Chem., 1981, 46, 2338.
11 (a) O. F. G uner, R . M. Ottenbrite, D. D. Shillady and P. V. A Iston, J. Org. Chem., 1987, 52, 391; (b) F. Fringeulli, L. M insti, F. Pizzo, T. Taticchi, D. J. H alls and E. Wenkert, J. Org. Chem., 1983, 48, 1810.

12 Z. Stojanac, R. A. Dickinson, N. Stojanac, R. J. Woznow and Z. Valenta, C an. J. C hem., 1975, 53, 616.

13 H. B. K agan and O. R iant, Chem. Rev., 1992, 92, 1007.
14 (a) K. M aruoka, T. Itoh, M. Sakurai, K. N onoshita and H. Y amamoto, J. A m. C hem. Soc., 1988, 110, 3588; (b) K . M aruoka, H. Imoto, S. Saito and H. Y amamoto, J. A m. C hem. Soc., 1994, 116, 4131.

15 B. P. G eyer and G. M c. P. Smith, J. A m. Chem. Soc., 1942, 64, 1649.
16 K. B. Strarowieyski, S. Pasynkiewicz and M. J. SkowronskaPtasinska, J. Organomet. C hem., 1975, 90, C43.
17 K. M aruoka, H.Imoto and H. Yamamoto, J. A m. Chem. Soc., 1994, 116, 12115.
18 J. J. P. Stewart, JCPE P044, version 6, 1990.
19 (a) N. K. H ouk, R. J. Loncharich, J. F. Blake and W. L. Jorgensen, J. Am. Chem. Soc., 1989, 111, 972, (b) N. K aila, R. W. Franck and J. J. D annenberg, J. Org. Chem., 1989, 54, 4206.

20 V. Branchadell, A. Oliva and J. Bertran, J. M ol. Struct. (THEOCHEM.), 1985, 120, 85.
21 V. Branchadell, A. Oliva and J. Bertran, J. M ol. Struct. (THEOCHEM.), 1986, 138, 117.
22 V. Branchadell, A. Oliva and J. Bertran, Chem. Phys. Lett., 1985, 113, 197.
23 R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlage Chemie, Weinheim, 1971.

Paper 6/08273D
Received 9th D ecember 1996
A ccepted 14th A pril 1997

[^0]: ${ }^{\text {a }}$ Lewis acids were used in an equimolar amount relative to juglone. ${ }^{\mathrm{b}} \mathrm{h}$: hour, d : day. ${ }^{\mathrm{c}} \mathrm{Y}$ ields after conversion into anthraquinones. ${ }^{\mathrm{d}}$ Isomer ratios were determined by the integration of phenolic protons in ${ }^{1} \mathrm{H} N M R$ spectrum. ${ }^{e}$ A luminium catalysts and juglone were mixed in toluene at $0{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 12 h , then the solutions were stirred at room temperature for the above mentioned time. ${ }^{f} \mathrm{~N}$ ot isolated in a pure form, but the ratio could be determined. ${ }^{9}$ A luminium tris(2,6 -dimethylphenoxide). ${ }^{h}$ A luminium tris(2,6-diphenylphenoxide).

